LECTURAS Y TALLERES DE CALCULO Y QUIMICA (HERNAN QUIROZ )

FRACCIONES PARCIALES

Integración de funciones racionales, por fracciones parciales, cuando el denominador sólo tiene factores lineales


 

 Ejercicios resueltos

En los siguientes ejercicios, obtenga la integral indefinida:
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation


 

S o l u c i o n e s


 

 MathType 5.0 Equation
MathType 5.0 Equation


 

 MathType 5.0 Equation
MathType 5.0 Equation


 

 MathType 5.0 Equation
MathType 5.0 Equation


 

 MathType 5.0 Equation
MathType 5.0 Equation


 

 MathType 5.0 Equation
MathType 5.0 Equation


 

 MathType 5.0 Equation
MathType 5.0 Equation


 

 MathType 5.0 Equation
MathType 5.0 Equation
Integración de funciones racionales, por fracciones parciales, cuando el denominador contiene factores cuadráticos
 Ejercicios resueltos

MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation


 

S o l u c i o n e s


 

 MathType 5.0 Equation
MathType 5.0 Equation


 

 MathType 5.0 Equation
MathType 5.0 Equation


 

 MathType 5.0 Equation
MathType 5.0 Equation


 

 MathType 5.0 Equation
MathType 5.0 Equation


 

 MathType 5.0 Equation
MathType 5.0 Equation
 MathType 5.0 Equation
Documento Microsoft Office Word


 

Integrales en las que aparecen expresiones cuadráticas
De la descomposición de fracciones parciales a veces resultan integrandos con expresiones cuadráticas ireductibles. De la integración de este tipo de funciones nos ocuparemos en los siguientes ejercicios resueltos.


 

 Ejercicios resueltos
En los siguientes ejercicios evalúe la integral indefinida
MathType 5.0 Equation


 

S o l u c i o n e s


 

 MathType 5.0 Equation
MathType 5.0 Equation




 

displayGoogleAd840e8a1c();if (!AD_clientWindowSize()) {document.write("");}

displayGoogleAd87a0f3ff();$ \displaystyle{ \int { 1 \over x^2-4 } \,dx } $ . 

Click HERE to see a detailed solution to problem 1.


  • PROBLEM 2 : Integrate $ \displaystyle{ \int { 2x+3 \over x^2-9 } \,dx } $ .

    Click HERE to see a detailed solution to problem 2.


  • PROBLEM 3 : Integrate $ \displaystyle{ \int { 2-x \over x^2+5x } \,dx } $ .

    Click HERE to see a detailed solution to problem 3.


  • PROBLEM 4 : Integrate $ \displaystyle{ \int { x^2-1 \over x^2-16 } \,dx } $ .

    Click HERE to see a detailed solution to problem 4.


  • PROBLEM 5 : Integrate $ \displaystyle{ \int { x^4+x^3+x^2+1 \over x^2+x-2 } \,dx } $ .

    Click HERE to see a detailed solution to problem 5.


  • PROBLEM 6 : Integrate $ \displaystyle{ \int { x^2+x-1 \over x(x^2-1) } \,dx } $ .

    Click HERE to see a detailed solution to problem 6.

  • PROBLEM 9 : Integrate $ \displaystyle{ \int { x^2-x+1 \over (x+1)^3 } \,dx } $ .

    Click HERE to see a detailed solution to problem 9.


  • PROBLEM 10 : Integrate $ \displaystyle{ \int { x^3+4 \over (x^2-1)(x^2+3x+2) } \,dx } $ .

    Click HERE to see a detailed solution to problem 10.


  • PROBLEM 11 : Integrate $ \displaystyle{ \int { x^3+2x-1 \over (x^2-x-2)^2 } \,dx } $ .

    Click HERE to see a detailed solution to problem 11.


  • PROBLEM 12 : Integrate $ \displaystyle{ \int { \sec^2 x \over \tan^3 x - \tan^2 x } \,dx } $ .

    Click HERE to see a detailed solution to problem 12.


  • PROBLEM 13 : Integrate $ \displaystyle{ \int{ x^3+8 \over (x^2-1)(x-2) } \,dx } $ .

    Click HERE to see a detailed solution to problem 13.


  • PROBLEM 14 : Integrate $ \displaystyle{ \int { e^x \over (e^x-1)(e^x+3) } \,dx } $ .

    Click HERE to see a detailed solution to problem 14.


  • PROBLEM 15 : Integrate $ \displaystyle{ \int { 1 \over e^x+1 } \,dx } $ .

    Click HERE to see a detailed solution to problem 15.


  • PROBLEM 16 : Integrate $ \displaystyle{ \int { 3-x \over x(x^2+1) } \,dx } $ .

    Click HERE to see a detailed solution to problem 16.


  • PROBLEM 17 : Integrate $ \displaystyle{ \int { 3x+1 \over x^2(x^2+25) } \,dx } $ .

    Click HERE to see a detailed solution to problem 17.


  • PROBLEM 18 : Integrate $ \displaystyle{ \int { 1 \over x^4-16 } \,dx } $ .

    Click HERE to see a detailed solution to problem 18.


  • PROBLEM 19 : Integrate $ \displaystyle{ \int { \cos x \over \sin^3 x + \sin x } \,dx } $ .

    Click HERE to see a detailed solution to problem 19.


  • PROBLEM 20 :Integrate $ \displaystyle{ \int{ 1 \over x^4+4 } \,dx } $ .

    Click HERE to see a detailed solution to problem 20.

    Comentarios

    No hay ningún comentario

    Añadir un Comentario: